НОВОСТИ    КНИГИ    СПРАВОЧНИК    КАРТА САЙТА    ССЫЛКИ


предыдущая главасодержаниеследующая глава

Определение коллоидов в сусле и вине

Производство высококачественных вин требует от винодела тонких дегустационных способностей, своеобразного таланта, расширяемого опытом. Но при всех достоинствах дегустационная оценка носит в некоторой мере субъективный и общий характер.

Дегустатор часто не в состоянии охарактеризовать роль отдельных соединений, которые влияют на органолептические качества продукта. Неудивительно, что искусство виноделия и, в частности, дегустации все больше обогащается более объективными аналитическими показателями, которые убедительно дополняют органолептические характеристики. Среди этих объективных характеристик значительную роль нужно отвести коллоидной фракции вина и сока.

Сравнение вина с живым организмом, который развивается, созревает, стареет и умирает, возможно только благодаря содержанию в нем коллоидной фракции. Коллоиды сообщают вину специфику, отличающую его от других водно-спиртовых растворов.

В то же время коллоиды имеют большое значение, как вещества, изменяющие органолептические признаки вина. Они могут стабилизировать прозрачность и цвет, придавать букету устойчивость, вызывать постепенное воздействие ароматических и вкусовых веществ на наши органы чувств и дают возможность полнее выявиться всему комплексу свойств вина, в том числе мягкости, бархатистости, гармоничности, сорбиции углекислоты (в игристом).

Изучение коллоидов вина может преследовать различные задачи. Коллоиды, как в приведенном (без сахара), так и в общем экстракте, играют (если не по количеству, то по качеству) основную роль.

Для определения степени экстрактивности вина важно знать общее количество в нем коллоидов.

При оценке сравнительной устойчивости вина против помутнения, наряду с общим количеством, нужно определять количество гидрофильных и гидрофобных коллоидов (обратимых и необратимых), а также наличие в коллоидах камеди (реакция с флорглюцином).

Поэтому значение коллоидов для виноделия трудно преувеличить.

Не меньшее значение имеет исследование коллоидов при разработке технологии соков, так как при сохранении коллоидов во многом сохраняются диетические качества сока.

Учитывая значение коллоидов для вин и соков и специфику их состава в зависимости от сорта винограда, нетрудно понять, что и в селекции винограда необходимо учитывать важную роль коллоидов.

Наконец, вино - интереснейший объект для теоретических коллоидно-химических исследований.

Для того чтобы составить наиболее полное представление о свойствах коллоидов, скажем несколько слов о дисперсных системах.

Дисперсные системы, в том числе и коллоидные, состоят из дисперсной фазы и дисперсионной среды. Дисперсная фаза сока и вина - это белковые и пектиновые вещества, камеди, растительные слизи, а также продукты дегидратации и полимеризации их и дубильных и красящих веществ. Дисперсионная среда для сока - вода, для вина - водно-спиртовая смесь.

По степени дисперсности, или по величине частиц, твердые вещества сусла и вина можно разделить на следующие фракции:

1. Макроскопическая дисперсность с поперечником частиц не менее 0,1 миллиметра. Последние представлены сильно агрегированными коллоидными хлопьями, кристаллами и агрегированными микроорганизмами, взвесь которых легко выпадает в осадок.

2. Микроскопическая дисперсность с поперечником частиц от 0,1 микрона до нескольких сотых долей миллиметра. Эти частицы представлены отдельными микроорганизмами, а также связанными в небольшие колонии, слабо агрегированными коллоидными хлопьями и мелкими кристаллами. Мельчайшие из них обладают броуновским движением, т. е. кинетически относительно устойчивы, что значительно усложняет отстой, фильтрацию, центрифугирование, различные оклейки или обработки адсорбентами. Отсюда неудачи при стерилизации методами удаления микроорганизмов.

Не менее сложна стерилизация высокими температурами, лучевой энергией, ультразвуком, так как споры или часть их надежно (за счет обезвоживания тормозных систем и оболочки) защищены от реакции на внешние воздействия. Поэтому осветление и консервирование продукта успешно осуществляется на практике только тогда, когда репродуктивные органы микроорганизмов не могут развиваться из-за отсутствия в среде одного из жизненно необходимых факторов, например кислорода, тепла, минерального или азотистого питания. На этом основан предложенный нами около 30 лет назад способ предупреждения дрожжевых помутнений столовых вин.

3. Коллоидная дисперсность с поперечником частиц от одного миллимикрона до нескольких сотых долей микрона. Такие частицы состоят из многих молекул-полимеров, обладают довольно большим объемом, сложным строением и поверхностью раздела между частицами (мицеллами) и средой.

Величина поверхностной энергии частиц имеет очень большое значение для устойчивости их размера, а также общей структуры дисперсной системы. В свою очередь, размер частиц и общая структура дисперсной системы определяют органолептические свойства сока - цвет, прозрачность, аромат, вкус.

Это положение закономерно для коллоидного состояния вещества. Известно, например, что в зависимости от размера частиц коллоидные гидрозоли серебра окрашены в синий, фиолетовый, красный или желтый цвета, в то время как ионы серебра бесцветны.

Интенсивность мутности также зависит не только от количества мутящих частиц, но и от их размера.

Изменение цвета, как правило, предшествует помутнению. Большое влияние оказывает коллоидная фракция на аромат и вкус сока. Это связано со специфическими свойствами коллоидной, полимерной, системы сока.

Полимерные частицы представлены в соке как гидрофильными, так и гидрофобными коллоидами - белковыми, а также усложненными образованиями дубильных и красящих веществ, пектином, камедью, фосфоросодержащими веществами, растительной слизью и продуктами их окисления, дегидратации и полимеризации. Все коллоидные частицы кинетически устойчивы, а гидрофильные коллоиды имеют, кроме того, связь с дисперсионной средой (растворителем).

Потеря устойчивости гидрофобных частиц (в силу присущей им тенденции к агрегации) связана с их укрупнением, а гидрофильных - с дегидратацией, главным образом в связи с окислением и последующей полимеризацией через образовавшийся кислородный мостик.

Стабилизация гидрофильного золя основана на предупреждении его окисления или же на предупреждении агрегации дегидратированных и полимеризованных частиц. Согласно нашим исследованиям* последнее достигается применением коллоида с большой защитной силой, стойкого к химическим изменениям (например, камеди плодовых культур). Так, камедь некоторых косточковых пород при применении ее в процессе окончательной фильтрации хорошо защищает соки и вина при дозировке 5-10 мг/л.

* (Авторское свидетельство № 58912)

Подбирая к дисперсной фазе подходящую дисперсионную среду и соответствующие стабилизаторы, можно любому веществу, независимо от того, является ли оно по природе кристаллическим или аморфным, придать коллоидное состояние с присущими ему свойствами.

В наиболее яркой форме свойства коллоидов проявляются при определенной степени дисперсности частиц вещества, равной 105-107 и поперечнике их а = 10-5-10-7 сантиметров.

Молекулярная дисперсность составляет примерно 108, так как диаметр молекул равен 10-8 сантиметров. Частицы диаметром 10-5, 10-3 сантиметров легко различимы под микроскопом.

С изменением степени дисперсности частиц изменяются их свойства.

На рисунке 3 показана группировка веществ сока и вина по физическому состоянию (степени дисперсности). Как видно из рисунка, поверхностное натяжение (обозначено кривой σ) при степени дисперсности от микроскопической до грубоколлоидной не изменяется, а затем, при переходе к молекулярной дисперсности, резко падает и исчезает.

Рис. 3. Группировка веществ сока по физическому состоянию
Рис. 3. Группировка веществ сока по физическому состоянию

Еще интереснее выглядит кривая удельной поверхностной энергии системы (А). Она достигает максимума у частиц с коллоидной дисперсностью.

Эти интересные зависимости были найдены А. В. Думанским в 1913 году.

Перейдем к изложению методики исследования коллоидов.

Для определения коллоидной фракции используется метод осаждения коллоидов спиртом-эфиром.

Определение общего количества коллоидов нужно начинать с нахождения оптимальной точки коагуляции по так называемому треугольнику коагуляции (рис. 4).

Рис. 4. Треугольники коагуляции: а, б - белых виноматериалов; в, г - красных виноматериалов
Рис. 4. Треугольники коагуляции: а, б - белых виноматериалов; в, г - красных виноматериалов

Для каждого номера системы в треугольнике соотношение золя - спирта - эфира постоянно. Это соотношение, обозначаемое порядковым номером, мы будем называть точкой треугольника коагуляции.

Каждая вершина приведенного на рисунке 4 равностороннего треугольника соответствует максимальному количеству одного из трех компонентов коагулирующей смеси, выражаемой десятью объемами.

Точка 11 соответствует 10 объемам эфира,
Точка 66 соответствует 10 объемам спирта,
Точка 1 соответствует 10 объемам вина или сока.

На стороне, противоположной углу, расположены нулевые точки данного компонента.

Таким образом, отсчет производится от 10 до 0 (11 измерений), причем по мере удаления от угла к противоположной стороне количество компонента уменьшается на единицу по каждому параллельному ряду цифр.

Согласно нашим исследованиям чаще оказываются приходными следующие точки коагуляции (табл. 11):

Таблица 11
Таблица 11

Техника определения. Для осаждения коллоидов по найденной точке в конические колбочки на 100-150 миллилитров отмеривают вино, спирт, эфир в количестве, соответствующем взятой точке коагуляции, но при увеличении дозировки каждого компонента в 10 раз, чтобы смеси было 100 миллилитров (для уменьшения ошибки при пересчете). Смесь энергично взбалтывают и оставляют на ночь.

Осевший к следующему дню осадок коллоидов после декантации переносят с помощью промывной смеси для данной точки (т. е. раствора, в котором золь заменен дистиллированной водой) на беззольный фильтр, заранее высушенный и взвешенный.

При определении коллоидов в суслах с повышенной кислотностью желательно ускорять определение путем нагрева с обратным холодильником в течение 15-20 минут и фильтрования через 30-40 минут после охлаждения. Общее количество промывной смеси на каждый осадок - 70-80 миллилитров.

После промывания фильтры с осадком вкладывают в те же бюксы и помещают в водяной сушильный шкаф для определения постоянного веса, на что требуется 2-2,5 часа.

В тех случаях, когда нужно установить не только общее количество, но и количество обратимых и необратимых коллоидов, в сушильный шкаф пропускают углекислоту.

Для разделения и определения количества гидрофильных и гидрофобных коллоидов высушенный в атмосфере СО2 и взвешенный осадок коллоидов вместе с фильтром снова вкладывают в воронку и растворяют (пептизируют) теплой дистиллированной водой. Если фильтр промывать небольшими порциями теплой (45-50°) дистиллированной воды, выжидая, пока она полностью стечет, то для растворения всех гидрофильных коллоидов вполне достаточно 35-40 миллилитров воды.

Для определения количества гидрофобных коллоидов фильтр с осадком, оставшимся после пептизации гидрофильных коллоидов, вкладывают в бюкс и высушивают. По разности между весом фильтра с общим количеством коллоидов и веса его с гидрофобными коллоидами определяют количество гидрофильных коллоидов, а по разности между весом фильтра с гидрофобными коллоидами и пустого фильтра - вес гидрофобных коллоидов. Осадок гидрофобных коллоидов анализируется на общий азот, фосфор и тяжелые металлы (Fe, Pb, Cu), причем фильтрат гидрофильных коллоидов лабилен и его следует анализировать сразу, а осадок гидрофобных коллоидов можно сохранять для анализов впрок.

Полученный фильтрат идет для исследования гидрофильных коллоидов, в нем определяют физико-химические показатели - поверхностное натяжение, вязкость, Eh и химические - азот, фосфор, камеди (реакция с флорглюцином).

Основные показатели состава сусла и вина говорят не только о настоящем, но и в некоторой степени о будущем состоянии продукта. Однако, чтобы точнее прогнозировать, как изменится продукт, необходимо представлять хотя бы основные факторы или причины, с которыми связано его изменение.

предыдущая главасодержаниеследующая глава



ПОИСК:







© Злыгостев Алексей Сергеевич - дизайн, подборка материалов 2001-2018
При копировании материалов проекта обязательно ставить ссылку:
http://wine.historic.ru/ 'Виноделие как искусство'